Submit Manuscript  

Article Details


Current Strategies and Future Perspectives of Skin-on-a-Chip Platforms: Innovations, Technical Challenges and Commercial Outlook

Author(s):

Ayça Bal Öztürk*, Beatrice Miccoli, Meltem Avci-Adali, Ferzaneh Mogtader, Fatemeh Sharifi, Berivan Çeçen, Gökçen Yaşayan, Dries Braeken and Emine Alarcin  

Abstract:


The skin is the largest and most exposed organ in the human body. Not only it is involved in numerous biological processes essential for life but also it represents a significant end point for the application of pharmaceuticals. The area of in vitro skin tissue engineering has been progressing extensively in the recent years. Advanced in vitro human skin models strongly impact the discovery of new drugs thanks to the enhanced screening efficiency and reliability. Nowadays, animal models are largely employed at the preclinical stage of new pharmaceutical compounds development for both risk assessment evaluation and pharmacokinetic studies. On the other hand, animal models often insufficiently foresee the human reaction due to variations in skin immunity and physiology. Skin-on-chips devices offer innovative and state-of-the-art platforms essential to overcome these limitations. In the present review, we focus on the contribution of skin-on-chip platforms in fundamental research and applied medical research. In addition, we also highlighted the technical and practical difficulties that must be overcome to enhance skin-on-chip platforms, e.g. embedding electrical measurements, for an improved modeling of human diseases as well as of new drug discovery and development.

Keywords:

Skin-on-chip, In vitro skin model, Skin tissue engineering, Microfluidic, Drug discovery and development, skin impedance.

Affiliation:

Department of Analytical Chemistry, Faculty of Pharmacy, İstinye University, 34010, Zeytinburnu, Istanbul, Imec, Department of Life Sciences and Imaging, 3001 Heverlee, Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, 34010 Istanbul, Department of Mechanical Engineering, Sharif University of Technology, Tehran 11365-11155, Biomechanics Department, Institute of Health Science, Dokuz Eylul University, 35340, Inciraltı, Izmir, Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, 34668, Haydarpaşa, Istanbul, Imec, Department of Life Sciences and Imaging, 3001 Heverlee, Department of Pharmaceutical Technology, Faculty of Pharmacy, Marmara University, 34668, Haydarpaşa, Istanbul



Full Text Inquiry