Trilochan Satapathy*, Shiv Kumar Bhardwaj, Arvind Kumar, Kamal Babu Aditya and Princy Kashyap Pages 1 - 15 ( 15 )
Gastrointestinal (GI) cancers, including gastric cancer, are among the most common and deadly cancers worldwide. Patients diagnosed with GI cancer still have a poor prognosis, largely resulting from the late stage of presentation for most of these patients and resistance to conventional therapy. This review covers new therapeutic strategies that apply advances in nanotechnology, immunotherapy, and drug delivery to overcome these challenges. Polymeric and metallic nanoparticles are distinguished for their potential to improve drug stability and solubility, as well as targeting drugs, thus diminishing systemic toxicity. The review centers around the use of immunotherapy in immune checkpoint inhibitors, CAR-T cell therapy, as well as the use of cancer vaccines to re-orient the immune system to be effective against cancer cells. Oncolytic viral therapy and bacteria- based treatments are unique non-conventional approaches that have a potential synergistic impact when used in concomitance with traditional methods. This review presents one of the most promising drug delivery systems: liposomes and micelles that can enhance pharmacokinetics and improve therapeutic results with controlled and site-specific release of anticancer agents. This review critically analyzes the strengths and challenges that include bioavailability, toxicity, and clinical translation, along with strategies to overcome such barriers. The review presents the most salient evidence to date and demonstrates the transformative potential of combining nanotechnology with immunotherapeutic and targeted treatments for managing gastric and other GI cancers. Future research should be focused on optimizing these platforms for clinical applications for the betterment of patient outcomes around the globe.
Nanotechnology, gastric cancer, immunotherapy, drug delivery.